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Conformal mapping on rough boundaries. II. Applications to biharmonic problems
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We use a conformal mapping method introduced in a companion paper@Damien Vandembroucq and
Stéphane Roux, Phys. Rev. E55, 6171~1997!# to study the properties of biharmonic fields in the vicinity of
rough boundaries. We focus our analysis on two different situations where such biharmonic problems are
encountered: a Stokes flow near a rough wall and the stress distribution on the rough interface of a material in
uniaxial tension. We perform a complete numerical solution of these two-dimensional problems for any
univalued rough surfaces. We present results for a sinusoidal and a self-affine surface whose slope can locally
reach 2.5. Beyond the numerical solution we present perturbative solutions of these problems. We show in
particular that at first order in roughness amplitude, the surface stress of a material in uniaxial tension can be
directly obtained from the Hilbert transform of the local slope. In the case of self-affine surfaces, we show that
the stress distribution presents, for large stresses, a power-law tail whose exponent continuously depends on the
roughness amplitude.@S1063-651X~97!03305-9#

PACS number~s!: 02.70.2c, 46.30.Cn, 47.15.Gf
al
o
ry
u

in
lg
ll
n

B
en

s

rip

t i
ca

to

x
e
o
xa
W
n
.
s
an
te

v
ti

c-
of
the
a
ap-
od,
t is

g

ex-

ng
nt
ane
y of

the
e
u-
gh
of
he
of
n-
ay
we
t for
law

ne
er-
I. INTRODUCTION

In a companion paper@1#, we have presented a conform
mapping technique that allows us to map any tw
dimensional~2D! medium bounded by a rough bounda
onto a half-plane. This method is based on the iterative
of fast Fourier transforms~FFT! and is extremely fast and
efficient provided that the local slope of the interface rema
lower than 1. When the maximum slope exceeds 1 this a
rithm, similar in spirit to a direct iteration technique we
suited to circular geometries@2,3#, can no longer be used i
its original form. Under-relaxation@4# suffices, however, to
make it convergent for boundaries having large slopes.
yond the determination of a conformal mapping for a giv
rough interface we have also shown in Ref.@1# how to di-
rectly generate mappings onto self-affine rough interface
chosen roughness exponent. The self-affine formalism is
anisotropic scaling invariance known to give a good desc
tion of real surfaces such as fracture surfaces@5–7#. This
statistical property of fracture surfaces is of great interes
the study of friction or transport processes in geologi
faults @8,9#.

Building a conformal mapping is entirely equivalent
solving a harmonic problem with a uniform potential~or
field! condition on the boundary. We used this property e
tensively in Ref.@1# to study stationary heat flows in th
vicinity of a rough boundary and we focused on the case
self-affine surfaces where we were able to compute the e
correlation between local surface field and height profile.
also gave special emphasis to the problem of the locatio
the plane interface equivalent to the rough one at infinity
turned out that the conformal mapping technique provide
very direct means of computing the shift between the pl
equivalent interface and the mean plane of the rough in
face.

The range of applications of this first study naturally co
ers fields where the Laplace equation appears: electrosta
551063-651X/97/55~5!/6186~11!/$10.00
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concentration diffusion, antiplane elasticity, etc. In this se
ond paper, we are specifically concerned with the case
biharmonic problems. The method we propose leads to
solution of the biharmonic field through the inversion of
linear system, as most other alternative numerical
proaches~e.g., boundary elements method, spectral meth
etc.! but in contrast to the latter, the linear system to inver
naturally well conditioned and of rather modest size~N equa-
tions for N Fourier modes in the conformal mappin
method! in contrast with direct spectral methods~4N un-
knowns!. Moreover, following the first step of our algorithm
analytically allows one to obtain systematic perturbation
pansion results.

After recalling our main results about conformal mappi
in the first section, we deal successively with two importa
examples of biharmonic problems: Stokes flows and pl
elasticity. The second section is thus devoted to the stud
a stationary Stokes~i.e., low Reynolds number! flow close to
a rough boundary. We shall also develop in this section
paradigm of the equivalent ‘‘no-slip’’ plane interface. In th
third section we point out the problem of the stress distrib
tion in a two-dimensional material bounded by a rou
boundary and submitted to a uniaxial tension. The study
such situations is of particular interest for computing t
influence of the roughness on the rupture probability law
brittle materials. We show that this problem is formally ide
tical to that previously solved for the Stokes flow. We p
special attention to the case of self-affine surfaces and
present in this section numerical results that suggest tha
large stresses, the surface stress statistical distribution
presents a power-law behavior.

II. CONFORMAL MAPPING ON ROUGH BOUNDARIES

We recall here the essential results described in Ref.@1#.
The aim of this section is to conformally map a half pla
onto a two-dimensional domain bounded by a rough int
6186 © 1997 The American Physical Society
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55 6187CONFORMAL MAPPING ON ROUGH BOUNDARIES . . .
face. We first recall briefly how to build a conformal ma
ping well suited to a given rough interface. This problem c
be written in a form similar to that of a ‘‘Theodorsen pro
lem’’ @3#; in the semi-infinite geometry we deal with, it ca
be solved with an iterative algorithm using fast Fourier tra
forms @1#. The second part of this section focuses on
specific case of self-affine interfaces. It turns out, indeed,
very simple constraints on a conformal mapping allow one
generate directly a two-dimensional domain bounded b
self-affine interface of chosen roughness exponent. T
property is of particular interest in statistical studies. W
could thus establish in Ref.@1# the correlation between th
norm of a harmonic field at a self-affine interface and
height of the latter.

A. Notations

As illustrated in Fig. 1 of Ref.@1#, we are seeking a map
ping from a half plane onto a two-dimensional doma
bounded by a rough interface. In the following we place o
study in the framework of the complex analysis. We consi
then the lower half planeD whose complex coordinatez
5x1 iy is such that Imz<0 and the two-dimensional domai
E bounded by the rough interface]E; we callw5u1 iv the
complex coordinate inE. We are seeking a mappingV from
D onto E. We restrict our study to mappingsV that are
bijective holomorphic functions; i.e.,V depends only on the
variablez and not on its conjugatez̄5x2 iy . The transfor-
mations associated with such functions are said to be con
mal in the sense that they preserve locally the angles. Le
now take advantage of the semi-infinite geometry we hav
deal with. The two domains we consider are very simi
apart from the region close to the boundary. Far from t
one,V is essentially the identity and we can write

V~z!5z1v~z!, ~1!

where the perturbationv decreases with depth and tak
non-negligible values only in the close vicinity of the inte
face. In the following, we consider periodic interfaces in o
der to minimize edge effects. Without loss of generality,
us choose 2p to be the lateral period. A natural form ofV is
then

V~z!5z1v~z!5z1 (
k50

`

vke
22ikz, ~2!

wherev is expanded on a basis of evanescent modes.

B. Computing the mapping for an imposed interface

We consider a single-valued interface]E. Let h be the
real function giving the interface geometry; for all pointsw
5u1 iv of ]E,

v5h~u!. ~3!

The mapping functionV is such thatV(]D)5]E; i.e.,

h~u!5ImS (
k50

`

vke
2 ikxD , ~4!
n
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k50

`

vke
2 ikxD .

The first equation is here very close to a Fourier transfo
except that we haveh(u) instead of justh(x) in the first
term. This formal proximity can be used to build an iterati
algorithm. For sufficiently small roughness, we can see fr
the second equation thatx is an approximation ofu at zeroth
order. A direct Fourier transform of the profileh(x) allows
then a first approximation$vk

(0)% of the coefficientsvk . The
latter can be used to correct the previous approximation
u(x); using Eq.~4! gives then the following estimation o
the nonuniform samplingu(x) and of the coefficientsvk via
the Fourier transform ofh„u(x)…. It turns out that this itera-
tive technique converges provided that the maximum sl
of the profile remains below unity. The technique can
used for any rough single valued interface~see Fig. 1!. For
profiles whose maximum slope exceeds 1, the algorithm
be made convergent with slight modifications such as the
of under-relaxation techniques. We refer the reader to R
@1# for more details on the convergence and the stabi
analysis in this specific framework. Extensive studies of t
technique in the case of circular geometry are available
Refs.@2, 4#.

C. Conformal mapping on self-affine interfaces

As pointed out above, the algorithm we have just d
scribed is suited to any rough interface. It is, in particul
possible to build conformal mappings associated with s
affine interfaces. The latter are defined by their scaling
variance properties: an interface described by the equa
y5h(x) is said to be self-affine if it remains~statistically!
invariant under the transformations

x→lx,

y→lzy ~5!

FIG. 1. An example of the obtained profile]E from the confor-
mal map, compared to the objective one, chosen to be a self-a
function with a roughness exponentz50.8. The amplitude of the
profile is 95% of the maximum amplitude, which preserves
convergence of the algorithm.
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6188 55DAMIEN VANDEMBROUCQ AND STÉPHANE ROUX
for all values of the real parameterl. The exponentz is
called the ‘‘Hurst’’ or roughness exponent. It is characteris
of the scaling invariance. From this property, we derive e
ily that

^@h~x!2h~x1d!#2&5C2d2z, ~6!

whereC is a prefactor. A simple Fourier transform give
then the power density spectrum of the rough self-affine p
file:

P~k!}k2122z. ~7!

When using the algorithm previously described to map
self-affine interface, the first guess for the mapping funct
coefficientsvk is thus such that

vk52iak}k
21/22zxk , ~8!

where theak are the coefficients of the Fourier transform
the profile andxk are k independent random variables.
turns out that this power-law behavior is not altered by
following steps of the algorithm. In a symmetric way, we c
impose, without any further restriction, thevk to follow a
power law and have a look at the interface generated.
thus choose

vk5Aekk
21/22z, ~9!

whereek are random Gaussian variables with zero mean
unit variance for the real and imaginary parts independen
However, we must note that nothing prescribesa priori that
the function obtained is bijective. From the parametrical
pression of the interface]E, we can write

ReF]V

]x
~x1 i0!G511A ImF(

k
ekk

1/22ze2 ikxG , ~10!

and to guarantee that]E remains single valued we have
choose amplitudes lower than the threshold valueAmax,
where

Amax5
21

Im@(kekk
1/22ze2 ikx#

. ~11!

We checked numerically~see Ref.@1#! that the power spec
trum of such synthetic profiles was indeed a power law w
the expected exponent.

III. STATIONARY STOKES FLOW IN THE VICINITY
OF A ROUGH WALL

The Stokes equation describes fluid flows at low Reyno
numbers. We address in this section the problem of a stat
ary Stokes flow in the vicinity of a rough boundary. Th
study of such flows can be of great technological interes
the case of convective transport processes@12#: one can think
of problems of surface deposition or erosion. In the sa
spirit, the occurrence of recirculating eddies can render v
difficult the decontamination of a polluted surface; contam
nant particles can be captured by diffusion in a cavity a
remain trapped in it for an arbitrary long time. From a mo
fundamental point of view, in experiments consisting of tra
c
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ing particles passively advected in a flow, the same proc
can lead to non-Gaussian statistics of the arrival time
tracer particles.

We consider a semi-infinite 2D geometry with period
lateral boundary conditions and a unit shear rate at infin
Far from being specific, the results obtained in this cont
can easily be extended for any case of stationary shear
in the framework of a double scale analysis. Considerin
shear flow of shear rateġ and an interface of typical bound
ary «, where the the velocity and pressure fieldsU and p
obey the usual Navier-Stokes equation, we can, follow
Richardson@11#, define an inner problem where the reduc
nondimensional variables obey, at first order in«, a simple
Stokes equation in a semi-infinite geometry. In the followi
we present a solution of this Stokes equation that can
rewritten as a biharmonic equation for the stream functi
This solution only requires the knowledge of a conform
mappingV from the lower half planeD onto the actual space
E bounded by the rough interface]E and the inversion of a
well conditioned linear system; it can thus be applied to a
single-valued rough interface. We focus this brief study
the problem of the determination of the location of a pla
boundary equivalent to the rough one at infinity. This pro
lem is equivalent to that of the replacement of the no-s
condition on a rough interface by a backflow condition~to be
determined! on the mean plane. We compare our results w
those of Tuck and Kouzoubov@10# who developed in the
actual spacea method similar to ours in spirit. Recent resu
about Stokes flows near rough boundaries can also be fo
in Refs. @12–14#; in most of them the Stokes equation
solved using boundary element methods~see, for instance
the review of Pozrikidis@15#!.

A. General solution

We address here the problem of a unit shear Stokes
in the vicinity of a rough boundary. Let us callC(w) the
stream function associated to the velocity fieldb in the actual
spaceE. We have by definition

bu5
]C

]v
, bv52

]C

]u
. ~12!

In a stream-function formalism, the Stokes equation is
duced to a simple biharmonic equation. Taking into acco
the boundary conditions, i.e., no slip on the interface and u
shear rate at infinity,C(w) has to be solution of the follow-
ing problem:

¹w
4C~w!50 in E,

¹wC~w!50 on ]E,

C~w!; 1
2v

2 as v→2`. ~13!

The essential difficulty obviously lies in the no-slip conditio
on the interface; the use of a conformal mapping allows u
build an equivalent problem with a much easier bound
condition, the new interface being plane instead of rou
Let us associate to the stream functionC in the actual space
E the real potentialF in the half planeD:
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55 6189CONFORMAL MAPPING ON ROUGH BOUNDARIES . . .
F~z!5C+V21~w!, ~14!

whereV mapsD onto E. We can thus define the following
equivalent problem in the new geometry:

H ¹w
4C~w!50

¹wC~w!50 on ]E

C~w!; 1
2v

2 as v→2`
J

⇔H ¹z
2F ¹z

2C~z!

uV8~z!u2G50

¹zF~z!50 on ]D
F~z!; 1

2 y
2 as y→2`

J . ~15!

In the case of a simple harmonic equation, building the c
formal mapping gives immediately the complete solutio
this is unfortunately no longer true in the case of a bih
monic equation. One can see that the original equatio
changed into a linear equation with nonconstant coefficie
The latter equation is directly related to the mapping funct
V. We show in the following that this difficulty can be cir
cumvented. Let us recall that in addition to the above
scribed conditions, the new potentialF has to be real and 2p
periodic inx. Besides, the boundary condition can be ma
simpler by taking into account that the interface is no
plane. DefiningF apart from an additive constant, we ca
write that it obeys
-
;
-
is
s.
n

-

e

¹zF50 on ]D⇔H F50 on ]D
]F

]y
50 on ]D. ~16!

The biharmonic potentialF can always be written in term
of two holomorphic functionsF andH such that

F~z!5V~z!F̄~z!1F~z!V̄~z!1H~z!1H̄~z!. ~17!

In the following we split both functions into a purely per
odic part ~denoted by the indexp! and a nonperiodic part
Taking into account the desired behaviors at infinity provid

F~z!5 1
8z1Fp~z!,

~18!

H~z!52 1
8z

21H1~z!1Hp~z!,

with

Fp~z!5 (
n>0

f ne
2 inz, Hp~z!5 (

n>0
hne

2 inz, ~19!

andH1 is z times anx-periodic function. The lateral period
icity of F forbids the occurrence of terms proportional
polynoms of the real variablex; hence,

H1~z!52z†Fp~z!1 1
8v~z!‡, ~20!

andF becomes then
ions
to
tions
F~z!5
1

2
y21(

n
hne

2 inz1(
n

h̄ne
in z̄12iy(

n
S f̄ n1 1

8
v̄nDein z̄22iy(

n
S f n1 1

8
vnDe2 inz

1 (
n>1

(
p

~ f pv̄n1p1vpf̄ n1p!e
inxe~n12p!y1 (

n>1
(
p

~v̄pf n1p1 f̄ pvn1p!e
2 inxe~n12p!y

1(
n

~vnf̄ n1v̄nf n!e
2ny. ~21!

We can deduce from the latter expression the partial derivative ofF with y:

]F

]y
~z!5y1(

n
nhne

2 inz1(
n

nh̄ne
in z̄12iy(

n
nS f̄ n1 1

8
v̄nDein z̄22iy(

n
nS f n1 1

8
vnDe2 inz

12i(
n

S f̄ n1 1

8
vnDein z̄22i(

n
S f n1 1

8
vnDe2 inz1 (

n>1
(
p

~n12p!~ f pv̄n1p1vpf̄ n1p!e
inxe~n12p!y

1 (
n>1

(
p

~n12p!~v̄pf n1p1 f̄ pvn1p!e
2 inxe~n12p!y1(

n
2n~vnf̄ n1v̄nf n!e

2ny. ~22!

Because the holomorphic functionsVp , Fp , andHp are 2p periodical, they can be developed using the basis of the funct
$e2 ikz%. Besides, because the interface of]D is simply the x axis, the restriction of these holomorphic functions
the boundary can be written as$e2 ikx%. The boundary condition problem can then be written by canceling the projec
of F and ]yF on the function vectors$e2 ikx%. Keeping only the firstN modes, we obtain 2N equations, which allow
one to obtain the 2N componentsf n and hn . The projection of the boundary condition on the function-vector 1 (k50)
gives first
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F: (
n

~vnf̄ n1v̄nf n!1h01h̄050,

]yF: (
n

2n~vnf̄ n1v̄nf n!12i S f̄ 01 1

8
v̄0D22i S f 01 1

8
v0D50. ~23!

We have then for the function vectors$e2 ikx% with kÞ0:

F: (
p

~v̄pf k1p1 f̄ pvk1p!1hk50,

]yF: (
p

~k12p!~v̄pf k1p1 f̄ pvk1p!1khk22i S f k1 1

8
vkD50. ~24!
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We can thus write the following linear system:

f k1
1

8
vk1 i(

p
p~v̄pf k1p1 f̄ pvk1p!50,

~25!

hk52(
p

~v̄pf k1p2 f̄ pvk1p!.

The coefficients$ f k% are solutions of the first equation,
N3N linear system. The coefficients$hk% are easily deduced
from the $ f k%. Once the conformal mapping is known, th
numerical resolution of the Stokes equation just requires
inversion of the linear system. Let us note that the la
system is easy to invert, which would not have been the c
if we had written the boundary condition in thew space. The
latter method was recently used by Tuck and Kouzoub
@10#. In the cited reference, they use expansions in a bas
$e2kycos(kx)% and write a linear system discretizing th
rough interface inN points. If this method is efficient in the
small slope limit, it becomes, however, impracticable
large slopes. The procedure requires thus the numerica
version of a matrix consisting of terms of ordere6NA, where
A is the roughness amplitude and this becomes practic
difficult or imprecise as soon as the productNA increases.

FIG. 2. Stream lines of a Stokes flow along a rough surfac
e
r
se

v
of

r
in-

lly

The conformal mapping avoids such numerical difficulti
since the boundary is a plane in the equivalent domain. O
can see in Figs. 2 and 3 maps of the stream function fo
stationary Stokes flow for two rough surfaces identical up
a dilation of a factor of 4 in the vertical direction. The strea
lines closely follow the smooth interface~Fig. 2!, while an
eddy appears in the largest depression of the roughest i
face ~Fig. 3!.

B. Equivalent plane boundary

We now introduce the notion of an equivalent plane n
slip boundary in the framework of a stationary Stokes flo
Our aim here is to replace the no-slip condition on the rou
boundary by a no-slip condition on an equivalent pla
boundary, the stream function remaining unchanged at in
ity. Let us recall that as in the case of a rough electro
which was studied in Ref.@1#, nothing prescribes the plan
equivalent boundary to lie at the average height of the ro
one. In harmonic problems, the dissymmetry between
effects of the peaks and those of the cavities causes
equivalent plane boundary to be shifted towards the pe

FIG. 3. Stream lines of a Stokes flow along the same rou
surface as above but four times rougher. We observe that a rec
lation flow appears in the deepest cavity.
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We shall see in the following that the same conclusion ho
in the case of the stationary Stokes flow. An illustration
this disymmetry naturally emerges with the occurrence
little eddies in pronounced depressions of the rough bou
ary. We have chosen in this text to develop the paradigm
the no-slip plane equivalent boundary but it is naturally a
possible to consider a plane boundary fixed at the ave
plane with a roughness-dependent slip boundary. The c
clusion previously mentioned about the place of the equ
lent boundary~nearer to the peaks than to the cavities! is
then expressed by a reversal flow condition. We show in
following that the conformal mapping method gives a natu
way to compute the vertical shift of the plane equivale
boundary. We compare these results with a perturbative
h

n
f
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lution that can be directly computed from the Fourier co
ficients of the interface.

1. Conformal mapping approach

As already mentioned, the stream functionC(u,v) of the
Stokes flow is entirely determined by the following cond
tions:

¹w
4C~w!50 in E,

“wC~w!50 on ]E,

C~w!; 1
2 v

2 as v→2`. ~26!

If we now return to the solution obtained via conform
mapping, we have
F~z!5
1

2
y21(

n
hne

2 inz1(
n

h̄ne
in z̄12iy(

n
S f̄ n1 1

8
v̄nDein z̄22iy(

n
S f n1 1

8
vnDe2 inz

1 (
n>1

(
p

~ f pv̄n1p1vpf̄ n1p!e
inxe~n12p!y1 (

n>1
(
p

~v̄pf n1p1 f̄ pvn1p!e
2 inxe~n12p!y

1(
n

~vnf̄ n1v̄nf n!e
2ny. ~27!
ior
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mall
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of
f

for-
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By construction,F(z) is such thatC(w) is biharmonic in
E and fulfills the no-slip boundary condition at the roug
interface. Let us now build the stream functionCeq associ-
ated with a plane interface located atv5H; we have imme-
diately

Ceq~w!5 1
2 ~v2H !2, ~28!

and its associated function in the half planeD is

Feq~z!5 1
2 @ ImV~z!2H#2, ~29!

which becomes at infinity

F~z!5 1
2 y

21 1
2 y@ Im~v0!18 Im~ f 0!#1O~1! as y→2`,

~30!

Feq~z!5 1
2 y

21y@ Im~v0!2H#1O~1! as y→2`.

Taking into account Eq.~23!, which specifies the expressio
of f 0 , the identity betweenF andFeq defines the value o
H:

H5Im~v0!12(
n

n~vnf̄ n1v̄nf n!. ~31!

2. Perturbative approach

Let us consider an interface of amplitude, say,A, with
characteristic lengthl such that the profile is statisticall
symmetrical. When we seek the location of the plane equ
 a-

lent electrode, we expect two different behaviors:~i! a de-
pendence onA2/l in the case of small amplitude or low
spatial frequency,~ii ! a linear dependence onA in the case of
large amplitude or high spatial frequency. The latter behav
comes directly from the fact that the equivalent plane reac
at the most the level of the highest peaks. In the case of s
slopes, it is easy to show that the correction from the aver
plane is of orderA2/l. The deviationH is naturally normal-
ized by the amplitude of roughnessA. The ratioH/A then
has to be a function of the only two characteristic lengths
the system,A and l, and can be expanded in the limit o
small slopes:

H

A
5fSAl D5a01a1

A

l
1a2SAl D 21OSAl D 3. ~32!

A simple symmetry about the mean plane has to leaveH
unchanged, since this symmetry is equivalent to a trans
mation ofA into 2A, a0 anda2 have to be zero, and

H5a1
A2

l
1OSA4

l3D . ~33!

A detailed perturbative analysis can be built in the case
a simple sine interface@10#. Writing a perturbative solution
in the conformal mapping formalism allows us to deal w
any rough interface. Following Eq.~21! we have

F~z!5 1
2 y

214y Im@Fp~z!1 1
8v~z!#

12 Re@v~z!Fp~z!1Hp~z!#. ~34!
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By construction,v, Fp , andHp are of orderA, with A being
the roughness amplitude. At first order the no-slip bound
condition becomes

F~x!50⇔Re@Hp
~1!~x!#50,

]F

]y
~x!50⇔4 Im@Fp

~1!~x!1 1
8v~1!~x!#12 ReF ]Hp

~1!

]y
~x!G

50. ~35!

The holomorphic functions being bounded, the resolution
these Hilbert problems gives immediately

Hp
~1!~z!50, Fp

~1!~z!52 1
8v~1!~z!, ~36!

Using the iterative algorithm briefly presented in Sec. II
first-order approximation of the coefficientsvk is

vk5 i
h̃k
N

1O~A2!, ~37!

where $h̃% is the 2N discrete Fourier transform of the re
function h associated with the rough interface. Using t
expression of Im(v0) derived in Sec. V B of Ref.@1#, we can
write

H52
1

N2 (
k,0

kuh̃ku2. ~38!

This result is consistent with the one proposed in R
@10# for a backflow slip condition on the mean plane of t
interface. In the particular case of a pure sine profile of a
plitudeA and wavelengthl, we recover

H522p
A2

l
. ~39!

It has to be noted that these first-order results are exa
identical to those obtained in the case of a rough electr
~up to a factor 2! despite the fact that we had to solve here
biharmonic equation instead of a simple harmonic one.
Figs. 4 and 5 we have plotted results of both the perturba
solution and the conformal mapping calculation in the c
of a sine interface and a self-affine interface of roughn
exponent 0.8 built with 64 Fourier modes. We check that
perturbative calculations correctly fit the results for sm
slopes~up to 0.5!. For larger slopes, the perturbative expre
sion overestimates the deviation, whose behavior beco
progressively linear. Note that our numerical method
lowed us to reach local slope values up to 2.5. This ma
mum slope can be increased by using more Fourier mode
the mapping function~we used 256 modes in the prese
calculation!.

IV. ELASTICITY

In this section, we analyze the effect of a slight surfa
roughness on the stress distribution in an elastic medium.
emphasize here the case of a semi-infinite material subm
to uniaxial tension. Although very elementary, this simp
model illustrates an effect that has been suggested to b
y

f

f.

-

tly
e

n
e
e
s
e
l
-
es
l-
i-
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t

e
e
ed

re-

sponsible for the mechanical strength of glass fibers. Re
experimental results@16# suggest that the nanometric roug
ness at the surface of glass fibers with a diameter of a
micrometers could be responsible for the decrease of the
sile resistance by a factor of about 5. In uniaxial tension,
resistance of a fiber is directly related to the distribution
maximum positive principal stresses. Using a simple per
bative expansion, we show that in the limit of small slop
the surface stress can be directly computed from the Hilb
transform of the local slope.

The Weibull law@17# usually gives a correct descriptio

FIG. 4. Shift from the mean plane of the plane equivale
boundary for a Stokes flow in the case of a sine interface of vary
amplitudeA. The dotted line corresponds to the second-order p
turbative expansion and the symbols to computations using con
mal mapping. The dashed line has a slope of21.

FIG. 5. Shift from the mean plane of the plane equivale
boundary for a Stokes flow in the case of a self-affine interface
varying amplitude. We use in the abscissa the maximum local s
dmax. The dotted line corresponds to the second-order perturba
expansion and the symbols to computations using conformal m
ping. The dashed line has a slope of20.06. The surface has bee
built with 64 Fourier modes and we used 256 modes in the solu
based on conformal mapping.
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of failure statistics in a wide range of brittle materials. Th
phenomenological law is partly based on the identification
the weakest link in the material~whose size is supposed to b
that of the smallest defects!. We will see in the following
that for a self-affine surface~such as measured for glass
bers by atomic force microscopy techniques@16#! the statis-
tical distribution of tensile stresses at the boundary displa
power-law behavior, which naturally implies the validity o
Weibull statistical failure distribution. Moreover, the exp
ab

ys

si

e

n:

n
d

f

a

nent of this power law, i.e., the Weibull modulus, contin
ously depends on the roughness amplitude.

A. General solution

In plane stress or plane strain conditions, the stress te
@s# can be completely represented by a unique real funct
named the Airy function:
@s#5Fsuu

suv

suv

svv
G , where suu5

]2C

]v2
, suv52

]2C

]u]v
, svv5

]2C

]u2
. ~40!
is
the
s
es

the
us

he
ce

um
that
fluc-
e

red
he
un-
le for

ofile
sult
This form directly comes from the stress balance in the
sence of external forces, i.e., div@s#50. In the framework of
2D elasticity in an isotropic medium, the Airy function obe

DDC50 in E. ~41!

With the stress tensor being computed from two succes
derivations of the biharmonic functionC, the latter is only
defined apart from a linear function inu andv. In the fol-
lowing, we consider free boundary conditions@s#n50 and
we impose uniaxial tension at infinity. Letn denote a unit
vector normal to the interface, we have

@s#n50 on ]E,

@s#→F10 0
0G as y→2`. ~42!

The Airy functionC is thus such that

nu
]2C

]v2
2nv

]2C

]u]v
50 on ]E,

nu
]2C

]u]v
2nv

]2C

]u2
50 on ]E,

C;
1

2
v2 as v→2`. ~43!

At any point of the interface]E, it is possible to give a
parametric representation of the tangential and normal v
tors t andn. In complex coordinates, we have

t~w!5
V8~x!

uV8~x!u
, n~w!5

iV8~x!

uV8~x!u
. ~44!

The boundary conditions at the interface can be rewritte

@s#n50
⇔~ t•“w!“wC50
⇔“wC5const50

on ]E,
on ]E,
on ]E.

~45!

We can choose the constant to be zero since the Airy fu
tion is only defined apart from an affine function. This lea
to
-

ve

c-

c-
s

“zF

V̄8~z!
50 on ]D,

⇔“zF50 on ]D.

~46!

It turns out that the boundary condition at the interface
exactly the same as the one we have encountered for
no-slip condition in a Stokes flow. The Airy function is thu
identical to the above-derived stream function for Stok
flow.

B. Surface stress distribution

1. Perturbative approach

With the normal stress being zero at the interface,
first-order expression derived in the previous section gives
the following result for the principal~tangential! stress at the
interface:

s tt5DC~w!5
DF~x!

uV8~x!u2
5122 Re@v~1!8~x!#

5122 (
k52n11

k5n

i
k

uku ~2 ik !
hk̃
2n

e2 ikx

5122H@w8#~x!, ~47!

whereH@ # stands for the Hilbert transform operator on t
real axis. At first order, we find that the tangential surfa
stress deviation from its mean value is proportional tothe
Hilbert transform of the local slope. Figures 6 and 7 give
two examples of stress distribution on surfaces of maxim
slope 0.1 and 0.4, respectively. In both cases, we can see
the stress fluctuations are much greater than the height
tuations ~which have been dilated by a factor of 5 in th
figures!. Note that~taking into account the dilation of the
height profile! the stress fluctuations are very large compa
with those of the height. In the context of rupture, with t
relevant parameter being the maximum stress, one can
derstand that a very modest roughness can be responsib
a dramatic decrease of the material resistance.

We observe good agreement between the stress pr
computed by conformal mapping and the perturbative re



e
rg
ov

on
nt
nt
le

u

Fig.
stri-
ess
ck
la.
ree-
the
n if
In
our

sults
000
We
am-
t on
nu-
ave
ve,
ar-

tri-

-

the
ults
and

2
th

let
ex
er

n
ati
eig

of

al
ith
. We
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~related to the Hilbert transform of the slope! for the smooth-
est interface but this is no longer the case for the rough
one especially in the area where the curvature is la
Higher-order perturbative terms are thus necessary to rec
the actual stress.

2. Statistical results

Let us now turn to the study of stress distributions
self-affine surfaces. The latter are designed to prese
Gaussian height distribution; i.e., their Fourier coefficie
arehk̃5Aekk

21/22z, whereek is a Gaussian random variab
of zero mean and unit standard deviation. In the case
small slopes, the validity of the first-order perturbative res

FIG. 6. Stress and height profiles on the rough interface of a
medium submitted to uniaxial tension. The bold line represents
height profile~of maximum slope 0.1! dilated by a factor 5. The
solid line gives the stress distribution obtained by the comp
conformal mapping computation, the dotted line is a first-order
pression of the stress, which is directly obtained from the Hilb
transform of the local slope of the interface.

FIG. 7. Same as Fig. 6 with an interface four times rougher. O
observes that in large curvature areas, the first-order approxim
no longer suffices to represent precisely the local stress. The h
profile ~of maximum slope 0.4! is dilated by a factor of 5.
st
e.
er

a
s

of
lt

suggests thus that the stress distribution is Gaussian. In
8 we have plotted in a log-log scale the surface stress di
bution obtained for 1500 self-affine surfaces of roughn
exponentz50.8 and of maximum slope 0.05; one can che
that, as expected, the distribution is well fitted by a parabo

In the case of larger slopes we have seen that the ag
ment between the first-order perturbative results and
complete computation becomes poorer. We then questio
the log-normal behavior of the distribution is preserved.
Fig. 9, we have plotted the surface stress distribution for f
self-affine surfaces of roughness exponentz50.8 and of re-
spective maximum slopes 0.2, 0.4, 0.6, and 0.8. These re
were obtained by averaging the data obtained from 1
different surfaces, each defined with 64 Fourier modes.
can see a clear power-law-like behavior for large stress
plitudes. The slopes we can measure are very dependen
the roughness amplitude. The interpretation of these new
merical results requires a perturbative analysis that we h
not developed yet for this biharmonic problem. We ha
however, performed a similar analysis in the case of a h
monic field on self-affine interfaces@18#. It turned out that in
a fashion similar to the one presented above, the field dis
bution law presents a power-law tail with an exponentt
}A22l 12z, whereA is the roughness amplitude,l the spatial
lower cutoff of the self-affine domain, andz the roughness
exponent. Callingg the logarithm of the field, the latter re
sult was derived, showing that the reduced variable

f A~g!5~A112Kg21!/KA ~48!

follows a Gaussian distribution~K.2 for harmonic prob-
lems!. Using K50.25, we can check indeed~see Fig. 10!
that all data obtained from our calculations collapse on
same parabola in a log-log scale. These numerical res
indicate that the same scaling applies for both harmonic

D
e

e
-
t

e
on
ht

FIG. 8. Surface stress distribution for self-affine surfaces
roughness exponentz50.8 and of roughness amplitudesA
50.05emax; emax is the amplitude such that the maximum loc
slope is equal to 1. The self-affine interfaces have been built w
32 Fourier modes and the results averaged on 1500 surfaces
can check that the distribution~symbols! is well fitted by a pa-
rabola, which shows that the stress is log-normally distributed.
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55 6195CONFORMAL MAPPING ON ROUGH BOUNDARIES . . .
biharmonic fields on self-affine surfaces. A detailed analy
of these statistical properties will be addressed elsewher

V. CONCLUSION

After introducing a conformal mapping technique that
lowed for a detailed study of the harmonic field in the vici
ity of rough boundaries@1#, we have extended in this pape
the use of this method to the study of biharmonic fields. W
have given a general solution to problems such as the St
flow over a rough surface and the stress distribution in
medium~bounded by a rough interface! in uniaxial tension.
Besides the knowledge of the mapping function~obtained
using a simple iterative algorithm!, this solution only re-
quires the linear inversion of a well conditioned matrix. B
cause the determination of the mapping function is only li
ited by the maximum value of the local slope at the interfa
the method is well suited to any kind of single-valued int
face. As an illustration, we have thus presented results
Stokes flow over self-affine boundaries whose maxim
slope reaches 2.5. In the same context of a Stokes flow
a rough boundary, we pay special attention to the determ
tion of the location of an equivalent no-slip plane interfac
The conformal mapping method gives way to a very natu
determination of this quantity. A simple perturbative soluti

FIG. 9. Surface stress distribution for self-affine surfaces
roughness exponentz50.8 and of roughness amplitudesA
50.2emax(n), 0.4emax(L), 0.6emax(h), and 0.8emax(s); emax is the
amplitude such that the maximum local slope is equal to 1. T
self-affine interfaces have been built with 64 Fourier modes and
results averaged on 1000 surfaces. For each distribution, a bold
shows the power-law behavior obtained for large stresses.
v.
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allowed us to retrieve for it a result proposed by Tuck a
Kouzoubov@10#. In the context of the plane elasticity, th
same perturbative result has allowed us to show that, in
limit of small slopes, the surface stress distribution was
rectly related to the Hilbert transform of the slope of t
interface. This very simple result could be used, e.g., for
evolution of a stress-corrosion front. The analysis of stati
cal results for the principal stress on self-affine surfaces
shown moreover that the large stress distribution presen
power-law tail whose exponent continuously depends on
roughness amplitude. Such results could be applied in
context of glass fiber rupture statistics to provide a fun
mental basis for the Weibull law that is known to descri
accurately the rupture statistics. A realistic description
these stress distributions requires a second-order perturb
analysis, which is planned to be presented in a futher stu
We have, however, recently proposed such an approac
the case of harmonic fields@18# where distributions of the
same kind have also been found and justified in two a
three dimensions.
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FIG. 10. Same distributions as in Fig. 9 in the reduced varia
f A(g)5(A112Kg21)/KA, whereg5 log10(s) andK50.25. The
data collapse onto a simple parabola, which shows the Gaus
character of the distribution off A(g).
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